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Abstract— Precise motion control is desired in a variety
of industrial robot applications. In order to achieve precise
and rapid rest-to-rest motion, the overshoot and the residual
vibration should be minimized. In this paper, a modified input
shaping approach is developed to address these problems. The
time delay introduced by conventional input shaping technique
is fully compensated in the proposed approach. Experiment
result on an industrial robot has shown the effectiveness of the
proposed approach.

I. INTRODUCTION

Industrial robots are widely used in manufacturing. In

order to guarantee high product quality, as well as high

productivity, precision position control and rapid rest-to-rest

motion are desired in a variety of applications. However,

serious overshoots and residual vibrations are widely and

frequently observed when industrial robots are conducting

fast motions [1]. Flexibility introduced by transmission units

is the major cause of these unwanted motions [2]. In order

to improve trajectory tracking performance, the overshoot

and the residual vibration must be minimized, and the

flexibility of industrial robots must be taken into account

in the controller design .

To address these problems, several approaches are pro-

posed, including singular perturbation [3], optimal trajectory

planning [4], input shaping [5]–[7], nonlinear feedback con-

trol [8], [9], and iterative learning control [10], [11]. With

a sophisticated system model, optimal trajectory planning

can be implemented to generate an optimal motion reference

to minimize the overshoot and the residual vibration. If

such kind of model is not available, but the states re-

lated to the elastic vibration can be measured or observed,

singular perturbation and nonlinear feedback control may

be implemented to accommodate unmodeled dynamics and

disturbances. Iterative learning control is another choice to

address these problems by learning an optimal feedforward

control when robot performs the same task repeatedly.

Comparing to other approaches, input shaping, which is

also known as command shaping, may be implemented to

effectively minimize the overshoot and the residual vibration

a) without a sophisticated dynamical model; b) without

directly measuring elastic vibrations for online feedback; c)

without requirement of repeated tasks. Input shaping was
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first proposed for smoothing or shaping the inputs of linear

second order systems. Later, modifications and extensions

were introduced to handle multiple modes and changing

natural frequencies of the system [12]. The robustness of in-

put shaping was also considered to accommodate parameter

uncertainty and disturbances [13].

As one of the easiest and successfully applied feedforward

control techniques, input shaping has been implemented

in a variety of applications ranging from nano-positioning

devices to large industrial cranes [14]–[16]. However, there

are certain drawbacks of input shaping for industrial robot

applications. One drawback is the time delay introduced by

input shaping. For industrial robots performing rapid rest-

to-rest motions, the time delay could slow down the entire

task, which is not desired in industrial applications. Another

drawback is that input shaping may change the original

motion reference. In certain applications, like spot welding,

an industrial robot is required to move along a pre-specified

trajectory to avoid colliding with work-pieces. If the shaped

motion command does not is also considered in the design

of the proposed input shaping approach. Experiment results

on a 6-axis industrial robot has verified the effectiveness

of the proposed approach. preserve the path of the original

trajectory, there could be collision between the robot and

the work-pieces. In order to compensate the time delay, this

paper proposes a zero time delay

This paper is organized as follows: conventional input

shaping techniques are reviewed in Section II; the proposed

zero time delay input shaping approach is introduced in

Section III; experiment results on a 6-axis industrial robot

is shown in Section IV; Section V concludes this paper.

II. INPUT SHAPING

A review of conventional input shaping techniques is

provided in this section [6], [7], [13]. Input shaping is

implemented by convolving a sequence of impulses with the

original system input. Each impulse can excite an oscillatory

response. When the amplitudes and time delays are well

tuned such that the oscillatory responses cancel each other,

there will be no residual vibration.

The idea of input shaping was first introduced for linear

second order systems. Consider a linear second order system

with the transfer function G,

G(s) =
Kω2

0

s2 + 2Dω0s+ω2
0

(1)

where ω0 is the natural frequency, D is the damping ratio,

and K is the static gain. The unit impulse response y(t) of
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this linear second order system (1) is

y(t) = K
ω0√

1−D2
e−ω0Dt sin(ωdt) (2)

where ωd = ω0

√
1−D2 is the damped natural frequency.

Let fIS be a sequence of n impulses

fIS(t) =
n

∑
i=1

Aiδ (t − ti) (3)

where Ai is the amplitude of the ith impulse, ti is the time

delay of the ith impulse. Typically, it is assumed that

ti+1 > ti
Ai > 0

(4)

Convolving this sequence with the original unit impulse,

the resulting response YIS(t) for t ≥ tn is

YIS(t) = ∑n
i=1 Aiy(t − ti)

= K
ω0√

1−D2
e−ω0Dt [A(ω0,D)sin(ωdt)

−B(ω0,D)cos(ωdt)]

= K
ω0√

1−D2
e−ω0Dt I(ω0,D)sin(ωdt +φ)

(5)

where

I(ω0,D) =
√

A(ω0,D)2 +B(ω0,D)2

A(ω0,D) = ∑n
i=1 Aie

ω0Dti cos(ωdti)
B(ω0,D) = ∑n

i=1 Aie
ω0Dti sin(ωdti)

cos(φ) =
A(ω0,D)

I(ω0,D)

sin(φ) = −B(ω0,D)

I(ω0,D)

(6)

The amplitude ratio between the shaped impulse response

(5) and unshaped impulse response (2) after tn is typically

used as the performance index of input shaping [13]. This

ratio is also known as percentage of residual vibration, which

is defined as

V (ω0,D) := e−ω0Dtn
√

A(ω0,D)2 +B(ω0,D)2

= e−ω0Dtn I(ω0,D)
(7)

The term e−ω0Dtn implies that a time delay tn is introduced

in the shaped response. This ratio reflects the effect of the

residual vibration suppression. The design objective of input

shaping is to make V ≈ 0.

For a given system, V depends only on the amplitudes and

time delays of the sequence of impulses fIS . Therefore the

design of input shaping is equivalent to the design of the

sequence fIS , which is also known as an input shaper.

One design of the input shaper is called zero vibration

(ZV) shaper. There are only two impulses in a ZV shaper.

The design of a ZV shaper involves solving a set of equations

with constraints (4)

A(ω0,D) = 0

B(ω0,D) = 0

∑n
i=1 Ai = 1

(8)

where the first two equations are derived from that the

percentage of residual vibration V = 0, and the third equation

is derived from the requirement that the input shaper has an

unity static gain for avoiding overshoot. The design of a ZV

shaper can be chosen as the solution of (8) with the minimum

t2.

Theoretically, ZV shaper could completely eliminate the

residual vibration since V = 0 for accurately known ω0,D.

However, ZV shaper can be sensitive to modeling errors

in practice. Thus robust design of input shaping was con-

sidered. Zero vibration and derivative (ZVD) shaper, extra-

insensitivity (EI) shaper, and specified insensitivity (SI)

shaper are commonly used robust input shapers [17]. Only

the specified insensitivity shaper is reviewed here since it

provides the most robust performance in these approaches.

The design of SI shaper can be stated as an optimization

problem. The objective is to minimize the total time delay

of the input shaping. On one hand, the constraints of this

optimization problem come from (4). On the other hand,

the constrains of this optimization problem come from the

requirement of SI that the percentage of residual vibration

is below a given level within a range of frequencies. It

is difficult to derive the analytical form of the percentage

of residual vibration constraint. Instead, an approximate

approach called frequency sampling approach is typically

implemented in the design of SI shaper.

In the frequency sampling approach, it is assumed that the

natural frequency satisfies ω0 ∈ [ωin f ,ωsup], and the resulting

percentage of residual vibration is required to be below a

given level V0. A set of frequencies are sampled from the

frequency range as {ω1
0 ,ω

2
0 , · · · ,ωm

0 }, where m is the number

of samples, and ω i
0 is the ith frequency sample. Suppose n

impulses are used in the shaper, the design of SI shaper can

be formulated as

min
A1,··· ,An,t1,··· ,tn

tn

s.t. ti+1 > ti, i = 1, · · · ,n
Ai > 0, i = 1, · · · ,n
∑n

i=1 Ai = 1

V (ω j
0 ,D)≤V0, j = 1, · · · ,m

(9)

When the sample set is large enough to cover the fre-

quency range, the frequency range [ωin f ,ωsup] can be well

approximated by the samples. In actual application, as long

as the estimated natural frequency is in the frequency range,

SI shaper guarantees good residual vibration suppression

performance. The cost of such robust input shaper is longer

time delay. Usually more than two impulses should be

implemented, and the overall time delay is longer than ZV

shaper.

III. ZERO TIME DELAY INPUT SHAPING

The proposed zero time delay input shaping is introduced

in this section. A path constraint issue of implementing input

shaping on industrial robot is firstly addressed. The zero time

delay input shaping is then developed based on the path

constraint design.
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A. Input Shaping with Path Constraint

In many works, input shaping is applied on single-input

single-output systems. In this paper, input shaping is imple-

mented on a 6-axis industrial robot, which is a multiple-input

multiple-output system. One natural choice is to implement

input shaping on each axis independently. However, as

mentioned in the introduction, this may change the original

task space motion reference, which could result in undesired

behaviour of the robot.

For the motion command given in Cartesian space, an-

other intuitive approach is to apply input shaping to the

Cartesian space motion command of industrial robots. The

corresponding joint space motion command can be obtained

through the solution of inverse kinematics problem. However,

input shaping is “smoothing” the motion command in each

direction of the Cartesian space, thus the shaped motion path

can still be different from the original motion path.

In this paper, a third approach is developed. Let the

Cartesian space motion command be {x(t),y(t),z(t)}, where

the motion time t ∈ [0,T ]. The motion command can be

parametrized with the normalized arc length s, defined as

s(t) =

∫ t
τ=0

√

ẋ(τ)2 + ẏ(τ)2 + ż(τ)2dτ
∫ T

τ=0

√

ẋ(τ)2 + ẏ(τ)2 + ż(τ)2dτ
(10)

where s ∈ [0,1]. The motion command can be parametrized

as {x(s),y(s),z(s)}. Input shaping is then implemented on the

normalized arc length s(t). The corresponding joint space

motion command is then obtained through the solution of

inverse kinematics problem.

A comparison of input shaping on joint space motion com-

mand, Cartesian space motion command, proposed approach,

and the unshaped motion command is given in Fig.1.
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Fig. 1: Comparison of Input Shaping on Joint Space Mo-

tion Command, Cartesian Space Motion Command, and the

Proposed Approach.

As shown in the figure, directly implementing input

shaping to joint space motion command results in a large

deviation. Implementing input shaping in Cartesian space

makes the shaped motion command closer to the unshaped

motion command, but the deviation still exists. The proposed

approach preserves the path of the unshaped motion com-

mand.

B. Zero Time Delay Shaping

In order to preserve the path of unshaped motion com-

mand, the proposed approach in III-A is implemented. The

input to the system can be chosen as the normalized arc

length s(t), t ∈ [0,T ]. Input shaping is then implemented on

the normalized arc length. According to the existing litera-

ture, time delay will be inevitably introduced by traditional

input shaping. If robustness is considered in the design, the

time delay could be even longer. In order to eliminate the

undesired time delay, and keep the robust design of input

shaping at the same time, the following design procedure is

proposed:

1. Design an input shaping using any approach introduced

in the literature. The input shaper fIS =∑n
i=1 Aiδ (t− ti)

is obtained. The time delay introduced by the input

shaping is tn.

2. Accelerate the unshaped motion command s(t) to

sacc(τ), where t ∈ [0,T ], τ ∈ [0,T −tacc], and tn < tacc <

T .

3. Apply the input shaping designed in the first step to

the accelerated motion command s(τ). The resulting

shaped input is SIS = fIS ∗ sacc.

For the second step, let a time scale parameter be k =
T−tacc

T
< 1, the accelerated normalized arc length is

sacc(τ) = sacc(kt) = s(t), t ∈ [0,T ] (11)

Suppose there are n impulses in the input shaper (3). The

resulting shaped motion command is

SIS(t
′) =

n

∑
i=1

Ais
′
acc(t

′− ti) ·u(t ′− ti) (12)

where the time variable t ′ ∈ [0,T − tacc + tn]; s′acc(t
′) is an

extension of sacc such that

s′acc(t
′) =

{

sacc(t
′), t ′ ∈ [0,T − tacc]

sacc(T − tacc), t ′ ≥ T − tacc

and u(t ′) is the Heaviside step function that

u(t ′) =

{

0, t ′ < 0

1, t ′ ≥ 0

Comparing to the unshaped motion command s(t), t ∈
[0,T ], the shaped motion command ends at T − tacc + tn.

Since tacc > tn, the end time of the shaped motion command

satisfies T − tacc + tn < T .

The proposed input shaping approach is sketched in Fig.2.

As shown in the figure, the unshaped motion command is

first accelerated. After input shaping is applied, time delay

is introduced to the accelerated motion command, but there

is no time delay between the unshaped motion command and

the shaped motion command.

The velocity or changing rate of the motion commands are

compared in Fig.3. As shown in the figure, it is clear that

the shaped motion command ends earlier than the unshaped

motion command, which means that there is no time delay

when applying this approach.
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IV. IMPLEMENTATION AND EXPERIMENT RESULT

The proposed approach is implemented on a 6-axis indus-

trial robot as shown in Fig.4.

X

Y

6-axis Industrial Robot

Z

Optical Reflector of Laser Tracker

Fig. 4: 6-Axis Industrial Robot.

The robot is performing a rapid rest-to-rest motion (e.g.,

a typical spot welding motion). The optical reflector of

an laser tracker is attached to the tool center point of the

robot for measuring the endeffector motion. The Cartesian

space motion command and the position measurement from

the laser tracker is shown in Fig.5. There exists obvious

overshoot and residual vibration.

A. Frequency and Damping Ratio Estimation

The natural frequency and damping ratio are required for

the design of input shaping. The motion data measured by

the laser tracker is used to estimate these parameters. The

residual vibration of the robot is considered to be caused by

the flexibility at each joint of the robot. It is assumed that
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Fig. 5: Cartesian Space Motion Command and the Position

Measurement.

the residual vibration of each joint can be fitted into a free

vibration of a mass-spring-damper system, which is a linear

second order system. No angular velocity in Cartesian space

is measured in the experiment, thus the joint space velocity

is assumed to be calculated using

q̇ = J(q)−1

[

ṗ

0

]

(13)

where q = [q1, · · · ,q6]
T is the set of joint positions of the

robot; J(q) is the Jacobian matrix of the robot; p = [x,y,z]T

is measured Cartesian space position of the robot, in which

x,y,z are the Cartesian space position in x,y,z direction. The

calculated joint space velocities during the one of the residual

vibrations in the entire motion are shown in Fig.6.
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Fig. 6: Estimated Joint Velocity During One of the Residual

Vibrations.

Let the time domain response of the free vibration of the

linear second order system (1) be η(t).

η(t) = e−Dω0t (C1 cos(ωdt)+C2 sin(ωdt)) (14)

623



where
C1 = η(0)

C2 = η̇(0)+Dω0η(0)
ωd

(15)

The velocity of the free vibration of a linear second order

system (1) is

η̇(t) = −Dω0e−Dω0t (C1 cos(ωdt)+C2 sin(ωdt))
ωde−Dω0t (C2 cos(ωdt)−C1 sin(ωdt))

(16)

The frequency and damping parameters of each joint

is first roughly estimated using fast Fourier transformation

(FFT). These parameters are further tuned to fit (16) using

least squares method. The fitting result is illustrated by one

of the results as shown in Fig.7.
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The estimated frequency and damping ratio parameters of

each joint are shown in Table.I. (where Jnt is short for Joint)

TABLE I: Estimated Frequency and Damping Ratio.

Parameter Jnt 1 Jnt 2 Jnt 3 Jnt 4 Jnt 5 Jnt 6

Frequency [Hz] 3.7 4.7 5.9 4.3 4.4 4.4

Damping Ratio 0.11 0.12 0.07 0.14 0.23 0.14

The natural frequencies are around 4 Hz. The robot is

performing rapid rest-to-rest motion within its workspace.

The natural frequencies at different positions may be differ-

ent. The same estimation is repeated at different positions,

and the distribution of the mean natural frequencies of all

the joints is shown in Fig.8. As shown in the figure, the

frequencies are very close.

B. Robust Design

Due to the estimation error of the natural frequency and

damping ratio error, the robust design of input shaping is

necessary. Furthermore, as shown in IV-A the frequency and

damping ratio parameters are different for different joints

and different positions. In order to avoid poor performance

due to a bad choice of parameters, robust design should be

considered.

The specified insensitivity design of input shaping [17]

is implemented in the experiment. 3 impulses are included

in the input shaper. The natural frequency is chosen to be

4.5 Hz in the final design, and the damping ratio is chosen

to be 0.05. The constraint of the SI shaper design is that

the residual vibration level should not exceed 15% of the

unshaped motion for the actual natural frequency 3.6Hz <
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Fig. 8: Distribution of Natural Frequencies at Different

Positions.

ω0 < 5.4Hz, which is a ±20% range. The parameters of the

input shaper are: A1 = 0.3369, A2 = 0.4069, A3 = 0.2542,

t1 = 0, t2 = 0.0891, and t3 = 0.1766. The SI shaper design

is compared with the standard ZV shaper design in Fig.9.

The x and y axis indicates the distribution of frequency and

damping ratio parameters, and the z axis indicates the level

of residual vibration. As shown in the figure, the vibration

suppression performance is not sensitive to damping ratio.

Comparing to ZV shaper, SI shaper is less sensitive to the

change of frequency.
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Fig. 9: Sensitivity Surface

C. Experiment Result

The proposed input shaping is implemented on the 6-axis

industrial robot. The original motion command is accelerated

by tacc = 0.2. The input shaping is performed on normalized

arc length as shown in Fig.2 in III-B. The Cartesian space

motion command, unshaped motion command, and shaped

motion command are compared in Fig.10. Comparing to

unshaped motion, input shaping has effectively reduced the

overshoot in z direction. This result can be observed more

clearly in Fig.11. As shown in the figure, the overshoot

has been reduced by 1.7 mm, which is about one third of

the unshaped motion. From a practical point of view, the

robot is considered to be settled when the residual vibration
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is less than 1mm and the robot can start its work (e.g.,

spot welding). Since the amplitude of the residual vibration

observed is very small, this level of vibration is tolerable

for industrial robot applications. In this case the reduction

of the overshoot becomes important as it can help avoid the

collision due to path deviation.

The effect of input shaping in y direction is shown more

clearly in Fig.12. While not included in the figure, the

conventional SI shaper would have introduced a delayed

response with a delay time of about 0.2 sec. The proposed

method does not introduce such a delay.
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V. CONCLUSION

In this paper, a zero time delay input shaping approach

was proposed for smooth settling of an industrial robot. The

proposed approach could fully compensate the time delay

introduced by the conventional input shaping techniques.

Another feature of the proposed approach was the ability

to preserve the path of the unshaped motion command,

which made it practical when applied to multi axis industrial

robots. The proposed approach was implemented on a 6-

axis industrial robot. The experiment results had shown

that the proposed approach could effectively improve the

performance of the robot by reducing the overshoot and no

time delay was introduced.
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